Abstract
The NaK channel is a cation-selective protein with similar permeability for K+ and Na+ ions. Crystallographic structures are available for the wild-type and mutated NaK channels with different numbers of cation-binding sites. We have performed a comparison between the potentials of mean force governing the translocation of K+ ions and mixtures of one Na+ and three K+ ions in a mutated NaK channel with only three cation-binding sites (NaK-CNG). Since NaK-CNG is not selective for K+ over Na+, analysis of its multi-ion potential energy surfaces can provide clues about how selectivity originates. Comparison of the potentials of mean force of NaK-CNG and K+-selective channels yields observations that strongly suggest that the number of contiguous ion binding sites in a single-file mechanism is the key determinant of the channel’s selectivity properties, as already proposed by experimental studies. We conclude that the presence of four binding sites in K+-selective channels is essential for highly selective and efficient permeation of K+ ions, and that a key difference between K+-selective and nonselective channels is the absence/presence of a binding site for Na+ ions at the boundary between S2 and S3 in the context of multi-ion permeation events.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.