Abstract

A tensor impedance surface waveguide is built using anisotropic unit cells. The waveguide can propagate a confined waveguide mode along its axis while waves incident to the guide at an orthogonal direction pass through as if the waveguides were not present. Both straight and curved implementations are demonstrated. Surface waves incident at an angle to the waveguide show reflection and refraction at the impedance interface. A theoretical model for tensor impedance surface waveguides is generalized to include dispersive unit cells and bending loss around curves. Dispersion results for modes propagating in the waveguide show agreement between the theory, simulation, and experimental measurements. A curved waveguide is also constructed which guides surface waves around a curve and is transparent to surface waves incident at an orthogonal angle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.