Abstract

Hard x-ray scattering (HXS) experiments with a photon energy of 100keV were performed as a function of temperature and applied magnetic field on selected compounds of the RFe$_3$(BO$_3$)$_4$ family. The results show the presence of several unexpected diffraction features, in particular non-resonant magnetic reflections in the magnetically ordered phase, and structural reflections that violate the diffraction conditions for the low temperature phase $P3_121$ of the rare-earth iron borates. The temperature and field dependence of the magnetic superlattice reflections corroborate the magnetic structures of the borate compounds obtained by neutron diffraction. The detailed analysis of the intensity and scattering cross section of the magnetic reflection reveals details of the magnetic structure of these materials such as the spin domain structure of NdFe$_3$(BO$_3$)$_4$ and GdFe$_3$(BO$_3$)$_4$. Furthermore we find that the correlation length of the magnetic domains is around 100 \AA{} for all the compounds and that the Fe moments are rotated $53^\circ\pm3^\circ$ off from the hexagonal basal plane in GdFe$_3$(BO$_3$)$_4$

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.