Abstract
AbstractThis paper presents an exact non‐reflecting boundary condition for dealing with transient scalar wave propagation problems in a two‐dimensional infinite homogeneous layer. In order to model the complicated geometry and material properties in the near field, two vertical artificial boundaries are considered in the infinite layer so as to truncate the infinite domain into a finite domain. This treatment requires the appropriate boundary conditions, which are often referred to as the artificial boundary conditions, to be applied on the truncated boundaries. Since the infinite extension direction is different for these two truncated vertical boundaries, namely one extends toward x →∞ and another extends toward x→‐ ∞, the non‐reflecting boundary condition needs to be derived on these two boundaries. Applying the variable separation method to the wave equation results in a reduction in spatial variables by one. The reduced wave equation, which is a time‐dependent partial differential equation with only one spatial variable, can be further changed into a linear first‐order ordinary differential equation by using both the operator splitting method and the modal radiation function concept simultaneously. As a result, the non‐reflecting artificial boundary condition can be obtained by solving the ordinary differential equation whose stability is ensured. Some numerical examples have demonstrated that the non‐reflecting boundary condition is of high accuracy in dealing with scalar wave propagation problems in infinite and semi‐infinite media. Copyright © 2003 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.