Abstract
The performance of several non-reflective acoustic boundary conditions is quantitatively compared using a plane wave test configuration. The study uses a high-order linearized Euler equation solver to find a non-reflective boundary condition which gives good performance in a variety of cases. The performance for acoustic waves with varying frequency and incident angle is compared in flows with varying Mach number. The performance of buffer zone, far-field, and characteristic non-reflective methods is compared. Some non-reflective boundary methods, such as buffer zones, contain tuneable parameters that are optimized in the current work. This provides a more comprehensive evaluation than previous studies which used constant values of the tuneable parameters. A new generic non-reflective zonal characteristic boundary condition is proposed and is shown to give improved performance in comparison to other tested methods. The performance of the proposed boundary condition is also demonstrated in a two-dimensional airfoil turbulence-interaction case that includes vortical waves leaving the domain, and in a three-dimensional duct mode case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.