Abstract
Insightful understanding of defect properties and prevention of defect damage are among the biggest issues in the development of photoelectronic devices based on wide-gap III-nitride semiconductors. Here, we have investigated the vacancy-induced carrier nonradiative dynamics in wide-gap III-nitrides (GaN, AlN, and AlxGa1-xN) by ab initio molecular dynamics and nonadiabatic (NA) quantum dynamics simulations since the considerable defect density in epitaxy samples. E-h recombination is hardly affected by Vcation, which created shallow states near the VBM. Our findings demonstrate that VN in AlN creates defect-assisted nonradiative recombination centers and shortens the recombination time (τ) as in the Shockley-Read-Hall (SRH) model. In GaN, VN improves the NA coupling between the CBM and the VBM. Additionally, increasing x in the AlxGa1-xN alloys accelerates nonradiative recombination, which may be an important issue in further improving the IQE of high Al-content AlxGa1-xN alloys. These findings have significant implications for the improvement of wide-gap III-nitrides-based photoelectronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.