Abstract

It is shown that a pair of identical emitters (e.g. wire dipole antennas) in the focal points of a disc, made of left-handed metamaterial (a "perfect" lens), form a non-radiating electromagnetic configuration. The emitters are fed with voltages of equal magnitude and pi-out-of-phase. Detailed finite-difference time-domain (FDTD) modeling shows that there are non-propagating electromagnetic fields generated - fields that remain confined within the region between the emitters and the lens. The energy balance of the system shows that the radiation resistance of the system is very low. This means that the input power is converted to heat in the volume of the lens and only a small fraction of it is radiated. The system performance shows that disturbing the configuration of the non-propagating electromagnetic fields with the presence of an externally introduced object stimulates radiation. This suggests possible detector applications. In-phase feeding voltages are also studied with the consequence that the radiation resistance of the antennae is increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.