Abstract
We show that the equation Δu = p(x)f(u) has a positive solution on R N , N ≥ 3, satisfying <artwork name="GAPA31011ei1"> <artwork name="GAPA31011ei2"> if and only if <artwork name="GAPA31011ei3"> when ψ(r) = min{p(x): |x| = r}. The nondecreasing continuous function f satisfies f(0) = 0, f (s) > 0 for s > 0, and sup s ≥ 1 f(s)/s<∞, and the nonnegative continuous function p is required to be asymptotically radial. This extends previous results which required the function p to be constant or radial.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have