Abstract
It is proved that any countable consistent theory with infinite models has a Σ-presentable model of cardinality 2ω over ℍ𝔽(ℝ). It is shown that some structures studied in analysis (in particular, a semigroup of continuous functions, certain structures of nonstandard analysis, and infinite-dimensional separable Hilbert spaces) have no simple Σ-presentations in hereditarily finite superstructures over existentially Steinitz structures. The results are proved by a unified method on the basis of a new general sufficient condition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.