Abstract
We give the first O(l)-speed O(l) approximation polynomial-time algorithms for several nonpreemptive min-sum scheduling problems where jobs arrive over time and must be processed on one machine. More precisely, we give the first O(l)-speed O(l)-approximations for the non-preemptive scheduling problems; l|r <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">j</sub> | Sigmaw <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">j</sub> F <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">j</sub> (weighted flow time), l |r <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">j</sub> | SigmaT <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">j</sub> (total tardiness), the broadcast version of 1 |r <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">j</sub> | Sigmaw <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">j</sub> F <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">j</sub> , an O(I)-speed, 1-approximation for l |r <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">j</sub> | Sigma U macr <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">j</sub> (throughput maximization), and an O(l)-machine, O(l)-speed O(1)-approximation for l |r <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">j</sub> | Sigmaw <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">j</sub> T <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">j</sub> (weighted tardiness). Our main contribution is an integer programming formulation whose relaxation is sufficiently close to the integer optimum, and which can be transformed to a schedule on a faster machine.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have