Abstract

The use of polydopamine-based bioinspired nanomaterials has shed new light on advanced drug delivery arising from their efficient surface functionalization. More recently, the polydopamine self-assemblies formed in two different modalities, i.e., nonporous and mesoporous nanoparticles, have begun to attract attention due to their expedient and versatile properties. However, their possibility for use in dermal drug delivery for local therapy, as well as their interaction with the skin, has not yet been demonstrated. Our study aimed to compare and explore the feasibility of the self-assembled nonporous polydopamine nanoparticles (PDA) and mesoporous polydopamine nanoparticles (mPDA) for local skin drug delivery. The formation of the PDA and mPDA structures was confirmed by the UV-vis-NIR absorption spectrum, the Fourier transform infrared spectroscopy, and the nitrogen adsorption/desorption isotherms. Using retinoic acid (RA) as the model drug, their effects on drug loading, release, photostability, skin penetration, and radical scavenging were investigated. Laser scanning confocal microscopy (LSCM) and hematoxylin and eosin (H&E) were introduced to probe their delivery routes and possible interaction with the skin. The results indicated that both PDA and mPDA could reduce the photodegradation of RA, and mPDA showed significantly better radical scavenging activity and drug loading capacity. The ex vivo permeation study revealed that both PDA and mPDA significantly enhanced the delivery of RA into the deep skin layers by comparison with the RA solution, in which follicular and intercellular pathways existed, and alteration in the structure of stratum corneum was observed. In light of drug loading capacity, size controllability, physical stability, as well as radical scavenging activity, mPDA was more preferable due to the improvement of these factors. This work demonstrated the feasibility and promising application of PDA and mPDA nanoparticles for dermal drug delivery, and the comparative concept of these two types of biomaterials can provide implications for their use in other fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call