Abstract

ABSTRACTResearch on quantifying non-photosynthetic vegetation (NPV) with optical remote-sensing approaches has been focusing on optically distinguishing NPV from green vegetation and bare soil. With a very similar spectral response curve to NPV, dry moss is a significant component in semiarid mixed grasslands and plays a large role in NPV estimation. However, limited attention has been paid to this role. We investigated the potential of optical remote sensing to distinguish NPV biomass in semiarid grasslands characterized by NPV, biological soil crust dominated by moss and lichen, and bare soil. First, hyperspectral spectral indices were examined to determine the most useful spectral wavelength regions for NPV biomass estimation. Second, multispectral red-edge indices and shortwave infrared (SWIR) indices were simulated based on Landsat 8 Operational Land Imager (OLI) and Sentinel-2A MultiSpectral Instrument band reflectance, respectively, to determine the most suitable multispectral indices for NPV estimation. The potential multispectral indices were then applied to Landsat 8 OLI images and Sentinel-2A images acquired in early, middle, peak, and early senescence growing seasons to investigate the potential of satellite images for quantifying NPV biomass. Our results indicated that hyperspectral red-edge indices, modified simple ratio, modified red-edge normalized difference vegetation index (mNDVI705), and normalized difference vegetation index (NDVI705) are better than the SWIR hyperspectral indices, including cellulose absorption index for quantifying NPV biomass. The simulated multispectral red-edge spectral indices (NDVIred-edge and mNDVIred-edge) demonstrate good and comparable performance on quantifying NPV biomass with SWIR multispectral indices (normalized difference index [NDI5 and NDI7] and soil-adjusted corn residue index). Nevertheless, the multispectral indices derived from Landsat 8 OLI and Sentinel-2 images have limited potential for NPV biomass estimation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call