Abstract

Fine stratification is commonly used to control the distribution of a sample from a finite population and to improve the precision of resulting estimators. One-per-stratum designs represent the finest possible stratification and occur in practice, but designs with very low numbers of elements per stratum (say, two or three) are also common. The classical variance estimator in this context is the collapsed stratum estimator, which relies on creating larger “pseudo-strata” and computing the sum of the squared differences between estimated stratum totals across the pseudo-strata. We propose here a nonparametric alternative that replaces the pseudo-strata by kernel-weighted stratum neighborhoods and uses deviations from a fitted mean function to estimate the variance. We establish the asymptotic behavior of the kernel-based estimator and show its superior practical performance relative to the collapsed stratum variance estimator in a simulation study. An application to data from the U.S. Consumer Expenditure Survey illustrates the potential of the method in practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.