Abstract

AbstractThe Hartley‐Rao‐Cochran sampling design is an unequal probability sampling design which can be used to select samples from finite populations. We propose to adjust the empirical likelihood approach for the Hartley‐Rao‐Cochran sampling design. The approach proposed intrinsically incorporates sampling weights, auxiliary information and allows for large sampling fractions. It can be used to construct confidence intervals. In a simulation study, we show that the coverage may be better for the empirical likelihood confidence interval than for standard confidence intervals based on variance estimates. The approach proposed is simple to implement and less computer intensive than bootstrap. The confidence interval proposed does not rely on re‐sampling, linearization, variance estimation, design‐effects or joint inclusion probabilities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.