Abstract
We propose a nonparametric statistical snake technique that is based on the minimization of the stochastic complexity (minimum description length principle). The probability distributions of the gray levels in the different regions of the image are described with step functions with parameters that are estimated. The segmentation is thus obtained by minimizing a criterion that does not include any parameter to be tuned by the user. We illustrate the robustness of this technique on various types of images with level set and polygonal contour models. The efficiency of this approach is also analyzed in comparison with parametric statistical techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.