Abstract
The minimum description length (MDL) principle is a theoretically well-founded, general framework for performing model class selection and other types of statistical inference. This framework can be applied for tasks such as data clustering, density estimation and image denoising. The MDL principle is formalized via the so-called normalized maximum likelihood (NML) distribution, which has several desirable theoretical properties. The codelength of a given sample of data under the NML distribution is called the stochastic complexity, which is the basis for MDL model class selection. Unfortunately, in the case of discrete data, straightforward computation of the stochastic complexity requires exponential time with respect to the sample size, since the definition involves an exponential sum over all the possible data samples of a fixed size. As a main contribution of this paper, we derive an elegant recursion formula which allows efficient computation of the stochastic complexity in the case of n observations of a single multinomial random variable with K values. The time complexity of the new method is O ( n + K ) as opposed to O ( n log n log K ) obtained with the previous results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.