Abstract
Many existing methodologies for analyzing spatiotemporal point patterns are developed based on the assumption of stationarity in both space and time for the second-order intensity or pair correlation. In practice, however, such an assumption often lacks validity or proves to be unrealistic. In this paper, we propose a novel and flexible nonparametric approach for estimating the second-order characteristics of spatiotemporal point processes, accommodating non-stationary temporal correlations. Our proposed method employs kernel smoothing and effectively accounts for spatial and temporal correlations differently. Under a spatially increasing-domain asymptotic framework, we establish consistency of the proposed estimators, which can be constructed using different first-order intensity estimators to enhance practicality. Simulation results reveal that our method, in comparison with existing approaches, significantly improves statistical efficiency. An application to a COVID-19 dataset further illustrates the flexibility and interpretability of our procedure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.