Abstract

This paper proposes a nonparametric multivariate density forecast model based on deep learning. It not only offers the whole marginal distribution of each random variable in forecasting targets, but also reveals the future correlation between them. Differing from existing multivariate density forecast models, the proposed method requires no a priori hypotheses on the forecasted joint probability distribution of forecasting targets. In addition, based on the universal approximation capability of neural networks, the real joint cumulative distribution functions of forecasting targets are well-approximated by a special positive-weighted deep neural network in the proposed method. Numerical tests from different scenarios were implemented under a comprehensive verification framework for evaluation, including the very short-term forecast of the wind speed, wind power, and the day-ahead forecast of the aggregated electricity load. Testing results corroborate the superiority of the proposed method over current multivariate density forecast models considering the accordance with reality, prediction interval width, and correlations between different random variables.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.