Abstract
This paper proposes a nonparametric multivariate density forecast model based on deep learning. It not only offers the whole marginal distribution of each random variable in forecasting targets, but also reveals the future correlation between them. Differing from existing multivariate density forecast models, the proposed method requires no a priori hypotheses on the forecasted joint probability distribution of forecasting targets. In addition, based on the universal approximation capability of neural networks, the real joint cumulative distribution functions of forecasting targets are well-approximated by a special positive-weighted deep neural network in the proposed method. Numerical tests from different scenarios were implemented under a comprehensive verification framework for evaluation, including the very short-term forecast of the wind speed, wind power, and the day-ahead forecast of the aggregated electricity load. Testing results corroborate the superiority of the proposed method over current multivariate density forecast models considering the accordance with reality, prediction interval width, and correlations between different random variables.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have