Abstract
Interval sampling is widely used for collection of disease registry data, which typically report incident cases during a certain time period. Such sampling scheme induces doubly truncated data if the failure time can be observed exactly and doubly truncated and interval censored (DTIC) data if the failure time is known only to lie within an interval. In this article, we consider nonparametric estimation of the cumulative incidence functions (CIF) using doubly-truncated and interval-censored competing risks (DTIC-C) data obtained from interval sampling scheme. Using the approach of Shen (Stat Methods Med Res 31:1157-1170, 2022b), we first obtain the nonparametric maximum likelihood estimator (NPMLE) of the distribution function of failure time ignoring failure types. Using the NPMLE, we proposed nonparametric estimators of the CIF with DTIC-C data and establish consistency of the proposed estimators. Simulation studies show that the proposed estimator performs well for finite sample size.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.