Abstract
Abstract : Major results have been obtained in the areas of nonparametric estimation of quantiles and of density functions under censoring, discrete failure models, and multiple comparisons. In particular, smooth nonparametric estimators of quantile functions from censored data were developed which give better estimates of percentiles of the lifetime distribution than the usual product-limit quantile function. Also, smooth density estimators from censored data were investigated using maximum penalized likelihood procedures. Several parametric models were proposed for the case of discrete failure data. These models provide a better fit to such data than some previously used discrete models. Finally, new methods of constructing simultaneous confidence intervals for pairwise differences of means of normal populations were developed, and the problem of selecting an asymptotically optimal design for comparing several new treatments with a control was solved. Work is continuing on the study of properties of kernel type quantile function estimators and development of goodness-of-fit tests for the model assumptions in accelerated life testing. Keywords: Nonparametric quantile estimation; Density estimation; Right-censored data; Discrete failure models; Multiple comparisons; Accelerated life testing.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have