Abstract
We develop nonparametric maximum likelihood estimation for the parameters of an irreversible Markov chain on states {0,1,2} from the observations with interval censored times of 0 → 1, 0 → 2 and 1 → 2 transitions. The distinguishing aspect of the data is that, in addition to all transition times being interval censored, the times of two events (0 → 1 and 1 → 2 transitions) can be censored into the same interval. This development was motivated by a common data structure in oral health research, here specifically illustrated by the data from a prospective cohort study on the longevity of dental veneers. Using the self-consistency algorithm we obtain the maximum likelihood estimators of the cumulative incidences of the times to events 1 and 2 and of the intensity of the 1 → 2 transition. This work generalizes previous results on the estimation in an "illness-death" model from interval censored observations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.