Abstract

We study the nonparametric estimation of the cumulative incidence function and the cause-specific hazard function for current status data with competing risks via kernel smoothing. A smoothed naive nonparametric maximum likelihood estimator and a smoothed full nonparametric maximum likelihood estimator are shown to have pointwise asymptotic normality and faster convergence rates than the corresponding unsmoothed nonparametric likelihood estimators. Using the smoothed estimators and the plug-in principle, we can estimate the cause-specific hazard function, which has not been studied previously. We also propose semi-smoothed estimators of the cause-specific hazard as an alternative to the smoothed estimator and demonstrate that neither is uniformly more efficient than the other. Numerical studies show that a smoothed bootstrap method works well for selecting the bandwidths in the smoothed nonparametric estimation. The use of the estimators is exemplified by an application to cumulative incidence and hazard of subtype-specific HIV infection from a sero-prevalence study in injecting drug users in Thailand. Copyright 2013, Oxford University Press.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.