Abstract

We propose a Dirichlet process mixture model (DPMM) for the P-value distribution in a multiple testing problem. The DPMM allows us to obtain posterior estimates of quantities such as the proportion of true null hypothesis and the probability of rejection of a single hypothesis. We describe a Markov chain Monte Carlo algorithm for computing the posterior and the posterior estimates. We propose an estimator of the positive false discovery rate based on these posterior estimates and investigate the performance of the proposed estimator via simulation. We also apply our methodology to analyze a leukemia data set.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.