Abstract

The non-Newtonian effects of an isothermal incompressibe laminar-flow lubricant on the dynamic stiffness and damping characteristics of one-dimensional slider bearings are theoretically examined. On the basis of Rabinowitsch fluid (cubic equation) model, the modified Reynolds equation considering bearing-squeeze action is derived to take into account the transient motion of the slider, and the non-Newtonian properties of lubricants. Applying a small perturbation technique, both the steady-state performance and the dynamic characteristics are evaluated. According to the results, the steady film pressure, load-carrying capacity, and the dynamic stiffness and damping behaviors are significantly affected by the values of the dimensionless nonlinear factor accounting for non-Newtonian effects, the wedge parameter of a slider profile and the squeeze number of bearing-squeeze action.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call