Abstract

The first experimental and theoretical evidence was provided for the non-negligible role of a diffusio-osmosis in the ion concentration polarization (ICP) layer, which had been reported to be in a high Peclet number regime. Under the assumption that the hydrated shells of cations were stripped out with the amplified electric field inside the ICP layer, its concentration profile possessed a steep concentration gradient at the stripped location. Since the concentration gradient drove a strong diffusio-osmosis, the combination of electro-osmotic and diffusio-osmotic slip velocity had a form of an anomalous nonmonotonic function with both a single- and multiple-cationic solution. A direct measurement of electrolytic concentrations around the layer quantitatively validated our new investigations. This non-negligible diffusio-osmotic contribution in a micro- and nanofluidic platform or porous medium would be essential for clarifying the fundamental insight of nanoscale electrokinetics as well as guiding the engineering of ICP-based electrochemical systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.