Abstract

AbstractLet be an orientable connected ‐dimensional manifold with and let be a two‐sided closed connected incompressible hypersurface that does not admit a metric of positive scalar curvature (abbreviated by psc). Moreover, suppose that the universal covers of and are either both spin or both nonspin. Using Gromov's ‐bubbles, we show that does not admit a complete metric of psc. We provide an example showing that the spin/nonspin hypothesis cannot be dropped from the statement of this result. This answers, up to dimension 7, a question by Gromov for a large class of cases. Furthermore, we prove a related result for submanifolds of codimension 2. We deduce as special cases that, if does not admit a metric of psc and , then does not carry a complete metric of psc and does not carry a complete metric of uniformly psc, provided that and , respectively. This solves, up to dimension 7, a conjecture due to Rosenberg and Stolz in the case of orientable manifolds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.