Abstract

Sensorimotor control and the involvement of motor brain regions has been extensively studied, but the role nonmotor brain regions play during movements has been overlooked. This is particularly due to the difficulty of recording from multiple regions in the brain during motor control. In this study, we utilize stereoelectroencephalography (SEEG) recording techniques to explore the role nonmotor brain areas have on the way we move. Nine humans were implanted with SEEG depth electrodes for clinical purposes, which rendered access to local field potential (LFP) activity in deep and peripheral nonmotor structures. Participants performed fast and slow arm reaching movements using a robotic manipulandum. In this study, we explored whether neural activity in a given nonmotor brain structure correlated to movement path metrics including: path length, path deviation, and path speed. Statistical analysis revealed correlations between averaged neural activity in middle temporal gyrus, supramarginal gyrus, and fusiform gyrus and our path metrics both within and across the subjects. Furthermore, we split trials across subjects into two groups: one group consisted of trials with high values of each path metric and the other with low values. We then found significant differences in LFP power in specific frequency bands (e.g. beta) during movement between each group. These results suggest that nonmotor regions may dynamically encode path-related information during movement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.