Abstract

A non-monotonic Lyapunov function (NMLF) is deployed to design a robust H2 fuzzy observer-based control problem for discrete-time nonlinear systems in the presence of parametric uncertainties. The uncertain nonlinear system is presented as a Takagi and Sugeno (T–S) fuzzy model with norm-bounded uncertainties. The states of the fuzzy system are estimated by a fuzzy observer and the control design is established based on a parallel distributed compensation scheme. In order to derive a sufficient condition to establish the global asymptotic stability of the proposed closed-loop fuzzy system, an NMLF is adopted and an upper bound on the quadratic cost function is provided. The existence of a robust H2 fuzzy observer-based controller is expressed as a sufficient condition in the form of linear matrix inequalities (LMIs) and a sub-optimal fuzzy observer-based controller in the sense of cost bound minimization is obtained by utilising the aforementioned LMI optimisation techniques. Finally, the effectiveness of the proposed scheme is shown through an example.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call