Abstract

The non-local theory solution to a 3-D rectangular crack in an infinite transversely isotropic elastic material is proposed by means of the generalized Almansi’s theorem and the Schmidt method in the present paper. By using the Fourier transform and defining the jumps of displacement across the crack surface as the unknown variables, three pairs of dual integral equations are derived. To solve the dual integral equations, the jumps of displacement across the crack surface are expanded in a series of Jacobi polynomials. Numerical examples are provided to show the effects of the geometric shape of the rectangular crack and the lattice parameter of the material on the stress field near the crack edges. Unlike the classical solution, the present solution is no stress singularity along the rectangular crack edges, i.e. the stress field near the rectangular crack edges is finite. Therefore, we can use the maximum stress as a fracture criterion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.