Abstract

The investigation of particle plasmons in metal nanoparticles has predominantly relied on local optical response approximations. However, as the nanoparticle size approaches the average distance of electrons to the metal surface, mesoscopic effects such as size-dependent plasmon line width broadening and resonance energy blue shifts are expected to become observable. In this work, we compared the experimental spectral characteristics with simulated values obtained by using a generalized nonlocal optical response theory-based local analogue model. Our results show that the nonlocal plasmon damping effects in single nanoparticles are less pronounced than those observed in plasmon-coupled systems. Furthermore, our research demonstrates that single-particle dark-field spectroscopy is an effective tool for investigating the nonlocal optical response of particle plasmons in single nanoparticles. These results have important implications for the rational design of novel nanophotonic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.