Abstract
We prove the existence for small times of weak solutions for a class of non-local systems in one space dimension, arising in traffic modeling. We approximate the problem by a Godunov type numerical scheme and we provide uniform L ∞ and BV estimates for the sequence of approximate solutions. We finally present some numerical simulations illustrating the behavior of different classes of vehicles and we analyze two cost functionals measuring the dependence of congestion on traffic composition.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.