Abstract
A possible mechanism behind the predominant source-side gate oxide degradation in channel hot-electron (CHE)-stressed deep submicrometer n-MOSFETs is presented. The role of a nonlocal hot-electron injection mechanism, arising possibly from carrier-to-carrier interaction and/or impact ionization feedback, is emphasized. The latter effect is prominently revealed through a systematic stress scheme that employs a reverse substrate bias. Oxide degradation behaviour is shown to be consistent with the anode electron-energy model. The more severe source-side oxide degradation may be attributed to nonlocally injected tertiary electrons possessing greater available energy on arrival at the anode (gate), as a result of a coupled heating process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.