Abstract

We investigate from first principles the field-like spin-orbit torques (SOTs) in a Ag$_{2}$Bi-terminated Ag(111) film grown on ferromagnetic Fe(110). We find that a large part of the SOT arises from the spin-orbit interaction (SOI) in the Ag$_{2}$Bi layer far away from the Fe layers. These results clearly hint at a long range spin transfer in the direction perpendicular to the film that does not originate in the spin Hall effect. In order to bring evidence of the non-local character of the computed SOT, we show that the torque acting on the Fe layers can be engineered by the introduction of Bi vacancies in the Ag$_{2}$Bi layer. Overall, we find a drastic dependence of the SOT on the disorder type, which we explain by a complex interplay of different contributions to the SOT in the Brillouin zone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.