Abstract
ABSTRACTIn this study, the pull-in phenomenon of a Nano-actuator is investigated employing a nonlocal Bernoulli-Euler beam model with clamped-clamped conditions. The model accounts for viscous damping, residual stresses, the van der Waals (vdW) force and electrostatic forces with nonlocal effects. The hybrid differential transformation/finite difference method (HDTFDM) is used to analyze the nonlocal effects on a graphene sheet nanobeam, which is electrostatically actuated under the influence of the coupling effect, the von Kármán nonlinear strains and the fringing field effect. The pull-in voltage as calculated by the presented model deviates by no more than 0.29% from previous literature, verifying the validity of the HDTFDM. Furthermore, the nonlocal nonlinear behavior of the electrostatically actuated nanobeam is investigated, and the effects of viscous damping, residual stresses, and length-gap ratio are examined in detail. Overall, the results reveal that small scale effects significantly influence the characteristics of the graphene sheet nanobeam actuator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.