Abstract
An exchange-correlation energy functional beyond the local density approximation, based on the exchange-correlation kernel of the homogeneous electron gas and originally introduced by Kohn and Sham, is considered for electronic structure calculations of semiconductors and atoms. Calculations are carried out for diamond, silicon, silicon carbide and gallium arsenide. The lattice constants and gaps show a small improvement with respect to the LDA results. However, the corresponding corrections to the total energy of the isolated atoms are not large enough to yield a substantial improvement for the cohesive energy of solids, which remains hence overestimated as in the LDA.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have