Abstract
This paper presents the formulation for a novel flexibility-based one-dimensional (1D) finite element that captures material and structural softening within a reinforced concrete framed structure. Separating the total elastic and inelastic components of the strain at integration points, a secant solution strategy is introduced that is consistent with damage models in the framework of nested iterative algorithms. In this formulation and solution strategy, at every stage of loading the inelastic deformation of the element can be obtained directly without resorting to unloading processes, which is useful when the value of inelastic deformation is required according to some seismic design provisions. In addition, a nonlocal integral damage model, based on averaged strain, has been used to ensure mesh size independent objectivity of local and global responses. The efficiency and accuracy of the formulation is compared with numerical and experimental data with good correlation observed and mesh objectivity demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.