Abstract

Using a wavefunction Dirac Bogoliubov-de Gennes method, we demonstrate that the tunable Fermi level of a graphene layer in the presence of Rashba spin orbit coupling (RSOC) allows for producing an anomalous nonlocal Andreev reflection and equal spin superconducting triplet pairing. We consider a graphene junction of a ferromagnet-RSOC-superconductor-ferromagnet configuration and study scattering processes, the appearance of spin triplet correlations, and charge conductance in this structure. We show that the anomalous crossed Andreev reflection is linked to the equal spin triplet pairing. Moreover, by calculating current cross-correlations, our results reveal that this phenomenon causes negative charge conductance at weak voltages and can be revealed in a spectroscopy experiment, and may provide a tool for detecting the entanglement of the equal spin superconducting pair correlations in hybrid structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.