Abstract

Herein is addresses the application of attractive and large magnetization of carbon nanotubes for modulating optical signals. A cascade system based on multiwall carbon nanotubes in thin film form and Au nanoparticles embedded in a TiO2 thin solid film were combined to achieve a nonlinear magneto-optical switching action. An all-optical switching device rising from an optical Kerr effect in the second stage is proposed to transmit a magneto-optical signal from the first stage. Multiwall carbon nanotubes with large magnetic sensitivity were incorporated in the arm of a Michelson interferometer to promote a change in the refractive index due to the Aharonov-Bohm effect. The Michelson interferometer was monitoring magneto-optical processes by a 532 nm wavelength. The second stage was recorded with a 532 nm nanosecond two-wave mixing configuration testing Au nanoparticles embedded in a TiO2 thin film. The development of simultaneous all-optical and magneto-optical systems is attractive since multifunctional quantum operations can be contemplated to be performed in low-dimensional platforms. In this paper is proposed a switching device that exploits interferometry for detecting magnetic signals and optical Kerr gating with the advantages of distinct nanostructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.