Abstract

This paper reports a hitherto undiscovered cyclic error whose origin is different from that of conventional errors in homodyne interferometers. To explain this error, a model based on ghost reflections and the interference principle is developed. In general, in homodyne interferometers, multi-order Doppler frequency shift ghost beams participate in the final interference and generate multi-order cyclic errors. This "new" cyclic error is compared with conventional errors by means of Lissajous curves. And we establish a setup to validate our proposed model. We use a corner cube retroreflector to replace the mirror and we find the error is significantly reduced. We believe that our findings can contribute to the further development of highly accurate homodyne interferometers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call