Abstract

Application of ZnO varistor at low voltage has increased significantly due to the high demands of low-voltage electronics with high nonlinearity characteristics and low leakage current. The varistor ceramics were developed via solid-state reaction method and the resultant sample was analyzed by means of SEM, EDS and XRD. The nonlinearity characteristics of ZnO varistor ceramics for different contents of cobalt oxide (Co3O4) at a given barium titanate (BaTiO3) amount were analyzed based on the J-E characteristics measurement. The increased value of nonlinear coefficient (α) equal to 4.8 was exhibited by the sample made with 12 wt.% BaTiO3 additive. As the concentration of dopant (Co3O4) incorporated was increased from 0.5 to 1.5 wt.%, the varistor voltage limit decreased from 8.9 V/mm to 7.0 V/mm, respectively. Additionally, the barrier height increased from 0.88 to 0.98 eV for 0.0 wt.% to 1.0 wt.% of Co3O4 concentration, respectively. The highest α of 7.2 was obtained at 0.5 wt.% Co3O4 and decreased with further doping content due to to the reduction of barrier height caused by the variation of electronic state at the grain boundaries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.