Abstract
Spatio-temporal pattern formation occurring in discretely coupled nonlinear dynamical systems has been studied numerically. In this paper, we review the possibilities of using arrays of discretely coupled nonlinear electronic circuits to study these systems. Spiral wave initiation and Turing pattern formation are some of the examples. Sidewall forcing of Turing patterns is shown to be capable of driving the system into a perfect spatial organization, namely, a rhombic pattern, where no defects occur. The dynamics of the two layers supporting Turing and Hopf modes, respectively, is analysed as a function of the coupling strength between them. The competition between these two modes is shown to increase with the diffusion between layers. As well, the coexistence of low- and high-dimensional spatio-temporal chaos is shown to occur in one-dimensional arrays.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.