Abstract
Non-linear vibrations of an axially moving beam are investigated. The non-linearity is introduced by including stretching effect of the beam. The beam is moving with a time-dependent velocity, namely a harmonically varying velocity about a constant mean velocity. Approximate solutions are sought using the method of multiple scales. Depending on the variation of velocity, three distinct cases arise: (i) frequency away from zero or two times the natural frequency, (ii) frequency close to zero, (iii) frequency close to two times the natural frequency. Amplitude-dependent non-linear frequencies are derived. For frequencies close to two times the natural frequency, stability and bifurcations of steady-state solutions are analyzed. For frequencies close to zero, it is shown that the amplitudes are bounded in time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.