Abstract

Free non-linear transverse vibration of an axially moving beam in which rotary inertia and temperature variation effects have been considered, is investigated. The beam is moving with a harmonic velocity about a constant mean velocity. The governing partial-differential equations are derived from the Hamilton's principle and geometrical relations. Under special assumptions, the two partial-differential equations can be mixed to form one integro-partial-differential equation. The multiple scales method is applied to obtain steady-state response. Elimination of secular terms will give us the amplitude of vibration. Additionally, the stability and bifurcation of trivial and non-trivial steady-state responses are analyzed using Routh-Hurwitz criterion. Eventually, numerical examples are presented to show rotary inertia, non-linear term, temperature gradient and mean velocity variation effects on natural frequencies, critical speeds, bifurcation points and stability of trivial and non-trivial solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.