Abstract

This paper presents a nonlinear observer-based controller configuration for a class of nonlinear single-input single-output systems with certain observability and stability properties. Particular attention is paid to the effect of input disturbances typically present in chemical processes. It is pointed out that conventional feedback linearizing internal model controllers reject output disturbances linearly, but that they can experience significant performance degradation in the presence of input disturbances. This problem is shown to originate in the lack of the linear superposition property. It is proven that the proposed control architecture rejects constant input disturbances from the control signal and then recovers linear reference tracking. The convenient tuning and improved performance are illustrated for pH neutralization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.