Abstract

The governing equations for analysing thermal vibration and dynamic buckling of eccentrically stiffened sandwich functionally graded cylindrical shells full filled with fluid and surrounded by elastic foundations in thermal environment are derived by using the classical shell theory, the geometrical nonlinearity in von Karman-Donnell sense, the smeared stiffener technique and Pasternak’s foundation model. Solutions of the problem are established according to the Galerkin’s method and Runge–Kutta method. The effects of fluid pressure, stiffeners, geometrical ratios, temperature and elastic foundation on the dynamic responses of shells are investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call