Abstract

Finite-amplitude thermal convection in a horizontal layer with finite conducting boundaries is investigated. The nonlinear steady problem is solved by a perturbation technique, and the preferred mode of convection is determined by a stability analysis. Square cells are found to be the preferred form of convection in a semi-infinite three-dimensional region Ω in the (γb,γt, P)-space (γb and γt are the ratios of the thermal conductivities of the lower and upper boundaries to that of the fluid and P is the Prandtl number). Two-dimensional rolls are found to be the preferred convection pattern outside Ω. The dependence on γb, γt and P of the heat transported by convection is computed for the various solutions analysed in the paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.