Abstract
The problem of finite-amplitude thermal convection in a horizontal layer of a low Prandtl number heated from below and rotating about a vertical axis is studied. Linear stability and weak non-linear theories are used to investigate analytically the Coriolis effect on gravity-driven convection. The non-linear steady problem is solved by perturbation techniques, and the preferred mode of convection is determined by a stability analysis. Finite-amplitude results, obtained by using a weak amplitude, correspond to both stationary and oscillatory convections. These amplitude equations permit to identify from the post-transient conditions that the fluid is subject to Pitchfork bifurcation in the stationary convection and Hopf bifurcation in the oscillatory convection. Thereafter, in the small perturbations hypothesis, an amplitude solution is evaluated and drawn in time and space scales.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.