Abstract

Nonlinear composite materials serve to homogenize electric fields and can effectively improve the local concentration of the electric field in power systems. In order to study the nonlinear surface conductivity properties of micro-nano epoxy composites, two types of epoxy micro-nano composite specimens were prepared in the laboratory using the co-blending method. The surface conductivity of the composites was tested under different conditions using a high-voltage DC surface conductivity test system. The results show that the surface conductivity of micro-nano structured composites increases and then decreases with the rise of nanofiller doping concentration. The nonlinear coefficient was 1.781 at 4 wt% of doped nanostructured SiC, which was the most significant nonlinear coefficient compared to other doping contents. For the same doping concentration, the micro-nano structured composites doped with nanostructured SiC have more significant surface conductivity at the same test temperature with a nonlinear coefficient of 1.635. As the temperature increases, the surface conductivity of the micro-nano structured composite increases significantly, and the threshold field strength moves towards the high electric field. Along with the increase in temperature, the nonlinear coefficients of micro-nano composites after doping with nanostructured SiC showed a gradually decreasing trend. The temperature has little effect on the nonlinear coefficients of the micro-nano structured composites after doping with O-MMT.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.