Abstract

In Costa Rica, typical dwelling constructions are generally built with reinforced concrete masonry walls. This construction practice became one of the most common during the second half of the last century in Costa Rica. These kinds of structures exhibit high lateral stiffness and shear capacity, which makes them susceptible to semi-ductile failure or torsion if they are not correctly designed and constructed or the walls are not well distributed. However, recent research has shown that this type of masonry exhibits adequate capacity to dissipate plastic energy if the latter requirements are controlled. In this study, the seismic behavior of a recently designed and built reinforced concrete masonry structure is studied from a probabilistic perspective. Experimental results have been used to calibrate the probabilistic model. This structure was designed using the response spectrum method according to the Costa Rican Seismic Code. To verify its expected behavior considering more advanced analysis, it is analyzed through probabilistic incremental nonlinear static and dynamic computational-based methods. The aim is to obtain probabilistic damage curves in a series of permutations between the mechanical properties and the nonlinear behavior of the walls. Three different Damage Indices are estimated. Specifically, the Park & Ang damage index is used as a reference for two approximations that employ the capacity curve as input. Results indicate that the behavior of the analyzed structure is suitable for the seismic demand provided by the Costa Rican Seismic Code. Finally, correlations between input and output variables are calculated to analyze what are the variables governing the structural response. A strong relationship between masonry compression strength, Young’s module, and the post yielding slope (input variables) and all the output variables has been observed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call