Abstract
A weakly nonlinear theory of wave propagation in two superposed dielectric fluids in the presence of a horizontal electric field is investigated in (2+1)-dimensions. The equation governing the evolution of the amplitude of the progressive waves is obtained in the form of a two-dimensional nonlinear Schrödinger equation. A three-wave resonant interaction for nonlinear excitations created from electrohydrodynamic capillary-gravity waves is observed to be possible in a dispersive medium with a self-focusing cubic nonlinearity. Under suitable conditions, the nonlinear envelope equations for the resonant interaction are derived by using multiple scales and inverse scattering methods, and an explicit three-wave soliton solution is discussed. Both the dynamic properties and the modulational instability of finite amplitude electrohydrodynamic wave are studied for the cubic nonlinear Schrödinger equation by means of linearized stability analysis and the nonlinear interaction coefficient. We show that the trajectories in phase space exhibit different behavior with the increase of nonlinear perturbations, and we determine the electric field and wavenumber ranges at which the original point is elliptic or hyperbolic, respectively. It is found also that the presence of the electric field in the equation modifies the nature of wave stability and soliton structures, and that the amplitude and width of the soliton are decreased and increased, respectively, when the electric field value increases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.